Abstract
It was numerically predicted that dissolved gas particles could enrich and adsorb at hydrophobic-liquid interfaces. Here we observe nucleation and growth of bright patches of ∼0.45 nm high on the graphite surface in pure water with frequency-modulation atomic force microscopy when the dissolved gas concentration is below the saturation level. The bright patches, suspected to be caused by adsorption of nitrogen molecules at the graphite-water interface, are composed of domains of a rowlike structure with the row separation of 4.2 ± 0.3 nm. The observation of this ordered adlayer might underline the gas segregation at various water interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.