Abstract

In this work Molecular layer deposition (MLD) technique used to synthesize titanium-vanadium (TiV x C y O z ) and aluminum-vanadium (AlV x C y O z ) hybrid organic-inorganic films via alternating surface reactions of titanium tetrachloride (or trimethylaluminum), vanadium oxochloride, and ethylene glycol. Using in situ monitoring it was found that the surface reactions were self-limiting at temperatures of 90 and 115°C. The coating thickness per molecular layer deposition cycle (growth rate) at 115°C on a silicon substrate varied from 5.8 to 11.4 A/cycle, and the film densities, from 1.7 to 2.0 g cm–3. An analysis of the samples obtained at 115°C revealed their amorphous structure. A thermal treatment of titanium-vanadium films at 450°C in air resulted in formation of highly structured coatings. These coatings were composed of nanowires of single-crystal vanadium oxide (V2O5) and mixed nanostructures of titanium and vanadium oxides. Increase in thermal treatment temperature to 500°C resulted in elongation of the V2O5 nanowires up to tens of micrometers and in their separation from the substrate. A thermal treatment of aluminum-vanadium films in air resulted in formation of a low-density film. Pyrolysis of the films in an inert gas yielded composite coatings containing domains of graphitized carbon. These films can be potentially useful in modern devices for energy storage, electronics, medicine and other promising fields of technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.