Abstract

Optoelectronic synapses have been utilized as neuromorphic vision sensors for image preprocessing in artificial visual systems. Self-powered optoelectronic synapses, which can directly convert optical power into electrical power, are promising for practical applications. The Schottky junction tends to be a promising candidate as the energy source for electrical operations. However, fully utilizing the potential of Schottky barriers is still challenging. Herein, organic self-powered optoelectronic synapses with planar diode architecture are fabricated, which can simultaneously sense and process ultraviolet (UV) signals. The photovoltaic operations are facilitated by the built-in potential originating from the molecular-layer-defined asymmetric Schottky contacts. Diverse synaptic behaviors under UV light stimulation without external power supplies are facilitated by the interfacial carrier-capturing layer, which emulates the membranes of synapses. Furthermore, retina-inspired image preprocessing functions are demonstrated on the basis of synaptic plasticity. Therefore, our devices provide the potential for the development of power-efficient and advanced artificial visual systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call