Abstract
418 Background: Alteration of histone modifications participating in transcription and genomic instability, has been recognized as an important role in tumorigenesis. Aberrant expression of histone-lysine N-methyltransferase 2 ( KMT2) family, which methylate histone H3 on lysine 4, is significantly correlated with poor survival in GC. Understanding how gene mutations of KMT2 family interact to affect cancer progression could lead to new treatment strategies. Methods: A total of 1,245 GC were analyzed using next-generation sequencing (NGS) and immunohistochemistry (IHC; Caris Life Sciences, Phoenix, AZ). Tumor mutational burden (TMB) was calculated based on somatic nonsynonymous mutations, and MSI status was evaluated by a combination of IHC, fragment analysis and NGS. PD-L1 status was analyzed by IHC (SP142). Gene fusions were detected by Archer (N = 59) or whole-transcriptome sequencing (N = 129). Results: The overall mutation rate of genes in KMT2 family was 10.6% ( KMT2A: 1.7 %, KMT2C: 4.7%, KMT2D: 7.1%). Overall, the mutation rates were significantly higher in KMT2-mutated (MT) GC than KMT2-wild type (WT) GC, except for TP53 (43% vs 63%, p < .0001). Interestingly, among the genes with significant higher mutation rates in KMT2-MT GC, 28% (21/76) of them were related to DNA damage repair (including BRCA1/ 2, RAD50) and 33% (25/76) of them were related to chromatin remodeling (including ARID1A/ 2, SMARCA4). Overexpression of HER2, amplifications of KRAS, CDK6 and HER2 were significant lower, while PCM1 and BCL3 amplifications were significant higher in KMT2-MT, compared to KMT2-WT GC ( p < .05). Significantly higher prevalence of TMB-high ( > 17mut/MB) (49% vs 3%), MSI-H (53% vs 2%), and PD-L1 overexpression (20% vs 7%) were present in KMT2-MT GC, compared to KMT2-WT GC ( p < .001). The rates of fusions involving ARHGAP26 (19% vs 3%, p < .01)and RELA (29% vs 0%, p < .0001) were significantly higher in KMT2-MT than those in KMT2-WT GC. Conclusions: This is the largest study to investigate the distinct genomic landscape between KMT2-MT and WT GC. Our data indicates that KMT2-MT GC patients could potentially benefit from agents targeting DNA damage repair and immunotherapy, which warrants further in-vitro and in-vivo investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.