Abstract

Fertilization is a decisive moment in life and enables the combination of the DNA from two gametes to ultimately form a new organism. The sperm surface, especially the head area, has distinguishable subdomains that are involved in distinct fertilization processes. It is known that the sperm head surface undergoes constant remodelling during epididymal maturation and migration in the male and female genital tract. But intriguingly, the identity, origin and spatial ordering of proteins at the sperm surface that are involved in mammalian fertilization are essentially unknown. This review deals with sperm surface protein modifications that are under somatic cell control. As soon as the sperm is released from the seminiferous tubules it is subjected to these modifications. These surface reorganisations continue until the sperm reside in the fallopian tube where they meet the oocyte and may fertilize it. Most likely, a selective process allows only functionally mature and intact sperm to optimally interact and fertilize the oocyte. Recent data suggest that even the perivitelline fluid is involved in sperm surface remodelling as it contains factors which could facilitate the first penetrating sperm to fertilize the oocyte. In this contribution, the kinetics of proteins at the sperm surface will be overviewed. Better understanding of this would help to design strategies to improve male fertility or to devise novel contraceptives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.