Abstract
Fungi are known to have variable genomes that can generate new virulence types capable of attacking important crop plants. To assess chromosome length polymorphisms in the barley spot blotch pathogen ( Cochliobolus sativus), we analyzed the karyotypes of 16 isolates using contour-clamped homogeneous electric field (CHEF) electrophoresis. The collection of isolates studied were from diverse regions of the world (USA, Canada, Japan, Brazil, Uruguay, and Poland) and included representatives comprising the three known C. sativus pathotypes of 0, 1, and 2. Under two different running conditions, the number of CHEF bands observed ranged from 8 to 13 with a size range of 0.85 to 3.80 mega-bases (Mb). Each of the 16 isolates showed a unique banding pattern, except for two North Dakota isolates ND90Pr and ND91-Bowman, which were very similar. Single-copy DNA probes, previously assigned to each of the 15 chromosomes identified in reference isolate ND93-1, were hybridized to Southern blots of CHEF-separated chromosomes and revealed highly polymorphic chromosomes among isolates. Chromosomal rearrangements (translocations, deletions, duplications) were found in several isolates. DNA markers previously found linked to VHv1, a gene in pathotype 2 isolates conferring virulence on barley cultivar Bowman, also were used as probes in hybridizations with the CHEF blots. The results showed that the chromosome carrying the virulence gene in pathotype 2 isolates is larger than its counterpart without the gene in other isolates. This suggests that the genomic region carrying the virulence locus VHv1 is unique to pathotype 2 isolates. This study provides useful information on genome structure and divergence, which is essential for advancing our understanding of the genetics and biology of C. sativus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.