Abstract

The strong and ultrastrong field-molecule interaction is a complex, many-body process involving multiple ionization processes. We present ion yields and molecular fragment energies for the ionization of chloromethane (CH3Cl) in a laser field with intensities spanning from 1014 to 1017 W cm−2. As the laser intensity increases, ionization of CH3Cl is observed to pass from molecular tunneling, to enhanced ionization (EI), to an atomic-like response. The energy spectra of the ions show no dependence on the intensity and has its source in dissociative molecular ionization. A classical model of an aligned C–Cl ion is used to model the interaction. Following an initial molecular ionization process, our results show EI is a driving influence in the formation of low charge states until ionization become atomic-like and involves tightly bound ion states whose ionization is unaffected by nearest neighbor ions of similar ion charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.