Abstract

ABSTRACT Objective In this study, we explored the expression of transcription factors, cytokines, and co-stimulatory molecules within the helper T (Th) cell subsets (Th1, Th2, Th17 and Treg) of patients with hypomorphic DCLRE1C gene mutations. Methods The study comprised eight patients and five controls. Transcription factor and cytokine expressions of Th subsets and co-stimulatory molecules were investigated by qPCR and flow cytometric following T cell stimulation. The findings were compared between patients (non-HSCT) and with hematopoietic stem cell transplantation (HSCT). Results Flow cytometric analyses; while the Treg rate was significantly lower in non-HSCT than in controls (p = 0.010), the IFN-γ rate was significantly higher in patients than in the control and HSCT groups (p = 0.016, p = 0.022 respectively). Co-stimulatory molecule expressions were significantly lower in non-HSCT than in control (p < 0.001), and there was a significant improvement after HSCT. Post-stimulation qPCR analysis, significant changes were detected in non-HSCT/control, non-HSCT/HSCT and HSCT/control comparisons. Conclusions Our study is the first study to molecularly investigate Th cell subsets in hypomorphic DCLRE1C patients. It was determined that abnormalities in Th cell subsets still persisted despite HSCT. There are still many conditions to be explained in these patients, and we believe that our study may shed light on future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.