Abstract

α-Amylase inhibitors (α-AIs) target α-amylases and interfere with the carbohydrate digestion of insects. Among different classes of α-AIs, a knottin-type inhibitor from Amaranthus hypochondriacus (AhAI) was found to be specific against coleopteran storage pests. In this report, we have characterized three previously unidentified knottin-type α-AIs from various Amaranthaceae plants namely, Amaranthus hypochondriacus (AhAI2), Alternanthera sessilis (AsAI) and Chenopodium quinoa (CqAI). They contain a signal peptide, pro-peptide, and mature peptide. The mature peptides of the new α-AIs shared 68 to 78% identity with AhAI and have highly variable pro-peptide regions. Along with the cystine-knot fold, they showed conservation of reactive site residues. All recombinant α-AIs were successfully expressed in their active form and native state using an oxidative cytoplasmic environment. Inhibition studies against various amylases revealed that these inhibitors showed selective inhibition of coleopteran recombinant insect α-amylases viz., Tribolium castaneum, and Callosobruchus chinensis. Tribolium castaneum α-amylase inhibition potency was highest for AhAI2 (Ki ~ 15 μM) followed by AsAI (Ki ~ 43 μM) and CqAI (Ki ~ 61 μM). Interaction analysis of these inhibitors illustrated that the reactive site of inhibitors make several non-covalent interactions with the substrate-binding pocket of coleopteran α-amylases. The selectivity of these inhibitors against coleopteran α-amylases highlights their potential in storage grain pest control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.