Abstract

ABSTRACT CO2 sequestration (CS) into the shale formations can reduce not only carbon emissions but also enhance gas recovery (EGR). The adsorption and diffusion behaviour of CO2 and CH4 on kerogens with different maturity play a crucial role in CS-EGR as they determine the efficiency of CO2 storage and energy recovery. In this work, GCMC and MD simulations were performed to investigate the adsorption and diffusion behaviour of CO2 and CH4 on kerogen models at different grades of maturity. It indicated that, in the same maturity, the CO2 adsorption capacity was more significant than that of CH4. With increasing maturity, the adsorption capacity and diffusion rate increased. With the increase of water contents, the swelling ratio of kerogens increased, and the adsorption capacity and the diffusion coefficients of CH4 and CO2 decreased. However, the adsorption selectivity of CO2 over CH4 significantly increased. H2O and CO2 molecules both preferred to adsorb on functional groups of oxygen, nitrogen and sulfur. This study consolidated our hypothesis that an injected CO2 to shale gas and oil formations contributed positively to enhanced energy recovery owing to the difference in adsorption and diffusion behaviour of CH4 and CO2 in kerogens with different maturity in gas and oil reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.