Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm), the causal agent of bacterial wilt and canker of tomato, is the most destructive bacterial disease of tomato causing substantial economic losses in Israel, the U.S.A. and worldwide. The molecular strategies that allow Cmm, a Gram-positive bacterium, to develop a successful infection in tomato plants are largely unknown. The goal of the project was to elucidate the molecular interactions between Cmmand tomato. The first objective was to analyze gene expression profiles of susceptible tomato plants infected with pathogenic and endophytic Cmmstrains. Microarray analysis identified 122 genes that were differentially expressed during early stages of infection. Cmm activated typical basal defense responses in the host including induction of defense-related genes, production of scavenging of free oxygen radicals, enhanced protein turnover and hormone synthesis. Proteomic investigation of the Cmm-tomato interaction was performed with Multi-Dimensional Protein Identification Technology (MudPIT) and mass spectroscopy. A wide range of enzymes secreted by Cmm382, including cell-wall degrading enzymes and a large group of serine proteases from different families were identified in the xylem sap of infected tomato. Based on proteomic results, the expression pattern of selected bacterial virulence genes and plant defense genes were examined by qRT-PCR. Expression of the plasmid-borne cellulase (celA), serine protease (pat-1) and serine proteases residing on the chp/tomA pathogenicity island (chpCandppaA), were significantly induced within 96 hr after inoculation. Transcription of chromosomal genes involved in cell wall degradation (i.e., pelA1, celB, xysA and xysB) was also induced in early infection stages. The second objective was to identify by VIGS technology host genes affecting Cmm multiplication and appearance of disease symptoms in plant. VIGS screening showed that out of 160 tomato genes, which could be involved in defense-related signaling, suppression of 14 genes led to increase host susceptibility. Noteworthy are the genes Snakin-2 (inhibitor of Cmm growth) and extensin-like protein (ELP) involved in cell wall fortification. To further test the significance of Snakin -2 and ELP in resistance towards Cmm, transgenic tomato plants over-expressing the two genes were generated. These plants showed partial resistance to Cmm resulting in a significant delay of the wilt symptoms and reduction in size of canker lesion compared to control. Furthermore, colonization of the transgenic plants was significantly lower. The third objective was to assess the involvement of ethylene (ET), jasmonate (JA) and salicylic acid (SA) in Cmm infection. Microarray and proteomic studies showed the induction of enzymes involved in ET and JA biosynthesis. Cmm promoted ET production 8 days after inoculation and SIACO, a key enzyme of ET biosynthesis, was upregulated. Inoculation of the tomato mutants Never ripe (Nr) impaired in ET perception and transgenic plants with reduced ET synthesis significantly delayed wilt symptoms as compared to the wild-type plants. The retarded wilting in Nr plants was shown to be a specific effect of ET insensitivity and was not due to altered expression of defense related genes, reduced bacterial population or decrease in ethylene biosynthesis . In contrast, infection of various tomato mutants impaired in JA biosynthesis (e.g., def1, acx1) and JA insensitive mutant (jai1) yielded unequivocal results. The fourth objective was to determine the role of cell wall degrading enzymes produced by Cmm in xylem colonization and symptoms development. A significance increase (2 to 7 fold) in expression of cellulases (CelA, CelB), pectate lyases (PelA1, PelA2), polygalacturonase and xylanases (XylA, XylB) was detected by qRT-PCR and by proteomic analysis of the xylem sap. However, with the exception of CelA, whose inactivation led to reduced wilt symptoms, inactivation of any of the other cell wall degrading enzymes did not lead to reduced virulence. Results achieved emphasized the complexity involved in Cmm-tomato interactions. Nevertheless they provide the basis for additional research which will unravel the mechanism of Cmm pathogenicity and formulating disease control measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.