Abstract

The Hofmeister series characterizes the ability of salt anions to precipitate polyampholytes/proteins. However, the variation of protein size in the bulk solution of acids and the effect of salts on the same have not been studied well. In this article, the four acids (CH3COOH, HNO3, H2SO4, andHCl) and their effects on the hydrodynamic radius (RH) of gelatin in the bulk solution are investigated. The effects of Na salt with the same anions are also considered to draw a comparison between the interactions of acids and salts with polyampholytes. It is suggested that the interactions of polyampholytes with acids are different from those of salts. The interaction series of polyampholytes with acids with respect to the RH of the polyampholyte is CH3COO->NO3->Cl->SO42- whereas the interaction series with salts is SO42->CH3COO->Cl->NO3-. These different interactions are due to equilibration between acid dissociation and protonation of polyampholytes. Another important factor contributing to the interactions in weak acids is the fact that undissociated acid hinders the movement of dissociated acid. Experiments and simulations were performed to understand these interactions, and the results were identical in terms of the trend in RH (from the experiments) and the radius of gyration (Rg) (from the simulations). It is concluded that the valence of ions and dissociation affect the interaction in the case of acids. However, the interactions are influenced by the kosmotropic and chaotropic effect, hydration, and mobility in the case of salts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call