Abstract

The issue of disinfection byproducts (DBPs) in the water has received critical attention due to the health effects on humans. In the water environment, interactions between bovine serum albumins (BSA), the most abundant water-soluble protein, and DBPs unavoidably occur. In this study, comparative binding interactions of two aromatic DBPs − 2,4,6-trichlorophenol (TCP) and 2,4,6-tribromophenol (TBP) with BSA were investigated systematically utilizing fluorescence spectrometry, UV absorption spectrometry, isothermal titration calorimetry and molecular docking approach. The fluorescence quenching results indicated that TCP/TBP could quench the endogenous fluorescence of BSA through static quenching mechanisms, and TBP showed a more substantial quenching effect. The binding constants were determined for TCP-BSA (3.638 × 105 L/mol, 303 K) and TBP-BSA (6.394 × 105 L/mol, 303 K) complexes, with TBP showing higher binding affinity than TCP. The thermodynamic study and docking analysis suggested that hydrogen bonding and van der Waals forces were the primary interaction forces. Both of TCP and TBP were located in the subdomain IIIA of BSA, and TBP could form more stable complex than TCP. The results of the present study contributed valuable information on the environmental behaviors of halophenols in water environment from perspectives of binding with BSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call