Abstract

Polychlorinated biphenyls (PCBs) possessed much potential hazard to environment because of its chemical stability and biological toxicity. Here, we identified the binding mode of a representative compound, PCB153, to human serum albumin (HSA) using fluorescence and molecular dynamics simulation methods. The fluorescence study showed that the intrinsic fluorescence of HSA was quenched by addition of PCB153 through a static quenching mechanism. The thermodynamic analysis proved the binding behavior was mainly governed by hydrophobic force. Furthermore, as evidenced by site marker displacement experiments using two probe compounds, it revealed that PCB153 acted exactly on subdomain IIIA (site II) of HSA. On the other hand, the molecular dynamics studies as well as free energy calculations made another important contribution to understand the conformational changes of HSA and the stability of HSA-PCB153 system. Molecular docking revealed PCB153 can bind in a large hydrophobic activity of subdomain IIIA by the hydrophobic interaction and hydrogen bond interactions between chlorine atoms and residue ASN391. The present work provided reasonable models helping us further understand the transporting, distribution and toxicity effect of PCBs when it spread into human blood serum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.