Abstract

The interactions between polysaccharides and phenolics in foods affect their physicochemical properties and bioactivity. Pectin and catechin/procyanidin present in plants ubiquitously and attracting more attentions for the potential health benefits. This work investigates the interactions between high methoxyl pectin and catechin/procyanidin in a simulative juice model using multiple microscopic and spectroscopic approaches and their influences on the antioxidant activity of phenolics were evaluated in the Caco-2 cells model. The results showed that pectin with either of phenolic compunds exhibited lower transmittance, zeta potential, viscosity, and larger particle size than it alone. The morphology of pectin complexes with either of phenolics under experimental conditions (pH=3.5) was observed. The ΔH° (-6.821kJ mol-1 ) and ΔS° (6.357×10-2 kJ mol-1 ) indicated that pectin interacts with procyanidin via electrostatic interaction, whereas hydrophobic interaction was the dominant drive force between pectin and catechin (ΔH°=1.422kJ mol-1 ; ΔS°=13.048 × 10-2 kJ mol-1 ). The antioxidant activities of catechin/procyanidin decreased while binding with pectin based on indexes of glutathione peroxidase, total superoxide dismutase, total antioxidant capacity, and malondialdehyde. PRACTICAL APPLICATION: The findings of this work indicated that the physicochemicalproperty of pectin and the antioxidant activity of catechin/procyanidin were influenced by the interactions between pectin and catechin/procyanidin in a simulative food system. This study provides insights into the molecular interactions between pectin and phenolics in a simulative food system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.