Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has affected the lives and livelihood of millions of individuals around the world. It has mutated several times after its first inception, with an estimated two mutations occurring every month. Although we have been successful in developing vaccines against the virus, the emergence of variants has enabled it to escape therapy. Few of the generated variants are also reported to be more infectious than the wild-type (WT). In this study, we analyze the attributes of all RBD/ACE2 complexes for the reported VOCs, namely, Alpha, Beta, Gamma, and Delta through computer simulations. Results indicate differences in orientation and binding energies of the VOCs from the WT. Overall, it was observed that electrostatic interactions play a major role in the binding of the complexes. Detailed residue level energetics revealed that the most prominent changes in interaction energies were seen particularly at the mutated residues which were present at RBD/ACE2 interface. We found that the Delta variant is one of the most tightly bound variants of SARS-CoV-2 with dynamics similar to WT. The high binding affinity of RBD towards ACE2 is indicative of an increase in viral transmission and infectivity. The details presented in our study provide additional information for the design and development of effective therapeutic strategies for the emerging variants of the virus in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call