Abstract

The coprecipitation of heavy metals (HMs) with Fe(III) in the presence of dissolved organic matter (DOM) is a crucial process to control the mobility of HMs in the environment, but its underlying immobilization mechanisms are unclear. In this study, Cr(III) immobilization by coprecipitation with Fe(III) in the presence of straw-derived DOMs under different Fe/C molar ratios, pHs, and ionic strengths was investigated using scanning transmission X-ray microscopy (STXM) and ptychography and X-ray absorption near-edge structure (XANES) spectroscopy. The results showed that Cr(III) retention was enhanced in the presence of DOM, a maximum of which was achieved at an Fe/C molar ratio of 0.5. The increase of pH and ionic strength could also promote Cr(III) immobilization. Cr K-edge XANES results indicated that Fe (oxy)hydroxide fractions, instead of organics, provided the predominant binding sites for Cr(III), which was directly confirmed by high spatial resolution STXM-ptychography analysis at the sub-micron- and nanoscales. Moreover, organics could indirectly facilitate Cr immobilization by improving the aggregation and deposition of coprecipitate particles through DOM bridging or electrostatic interactions. Additionally, C K-edge XANES analysis further indicated that the carboxylic groups of DOM were complexed with Fe (oxy)hydroxides, which probably contributed to DOM bridging. This study provides a new insight into Cr(III) immobilization mechanisms in its coprecipitation with Fe(III) and DOM, which could have important implications on the management of Cr(III)-enriched soils, particularly with crop straw returning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call