Abstract

Genetic diversity existing amongst five Eulophia orchid species were assessed using start codon targeted polymorphism (SCoT) and inter-retrotransposon amplified polymorphism (IRAP) markers. A total of 12 SCoT and 5 IRAP markers revealed an average of 63% genetic variability [SCoT = 63.87; IRAP = 64.95%] amongst the five Eulophia species investigated. The genetic similarities were assessed using both UPGMA and Bayesian approaches which indicated identical clustering patterns at a genetic similarity level of 50%. Analysis of molecular variance (AMOVA) revealed the presence of a significant degree of genetic variability, mostly compartmentalized within the species level. Amongst the five assessed Eulophia species, E. parviflora was the most genetically diverse representative whereas E. welwitschii was found to be least diverse based on a comparative assessment of various population genetic parameters like Nei's gene diversity (h) and Shannon's information index (I) with an overall gene flow value greater than 1. In order to evaluate the comparative marker efficiency, SCoT and IRAP marker data were subjected to various benchmark analyses like marker index, resolving power, polymorphic index content, multiplex ratio and effective multiplex ratio which revealed the robustness of both the marker techniques in assessment of genetic diversity. The present report provides the first molecular insights into the aspects of inter and intra specific genetic variability in medicinally as well as horticulturally important Eulophia species along with addressing their conservation concerns. In a nutshell, the present approach is simple, rapid and cost effective and can be extended for analysis of genetic diversity of other related plant species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call