Abstract

The Maf protein family belongs to the activator protein 1 (AP-1) superfamily of transcription factors that bind specific DNA target sequences through a basic region and exploit a leucine zipper (LZ) motif for protein–protein interactions leading to homo- or hetero-dimerization. Mafs unique DNA-binding domain contains a highly conserved extended homology region (EHR) that allows to recognize longer DNA sequences than other basic leucine zipper (bZIP) transcription factors.Inspired by the fact that overexpression of Mafs is observed in about 50% of cases of multiple myeloma, a hematological malignant disorder, we undertook a peptide inhibitor approach. The LZ domain of c-Maf, one of large Mafs, was produced by solid phase peptide synthesis. We characterized its secondary structure and dimerization properties, and found that dimerization and folding events are strictly coupled. Moreover, potential peptidic c-Maf dimerization inhibitors were computationally designed and synthesized. These compounds were demonstrated by circular dichroism (CD) spectroscopy and MALDI-TOF mass spectrometry to bind to c-Maf LZ monomers, to drive folding of their partially disordered structure and to efficiently compete with dimerization, suggesting a way for interfering with the function of c-Maf and, more generally, of intrinsically disordered proteins, till now considered undruggable targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.