Abstract

Anthracyclines are effective anticancer drugs but have drawbacks including systemic toxicity and drug resistance. Delivering them directly to the tumor may improve therapeutic efficacy and reduce adverse effects. Carbon nanotubes (CNTs) can act as excellent drug delivery systems (DDS), but pristine CNTs have inert surfaces, which contributes poor drug loading capacity and limits dispersion. In this study, we designed a series of functionalized CNTs (f-CNTs) with anchored hydrophilic groups (OH, COOH, and NH2) by substitutional doping of the CNT lattice (DNT) using N or B atoms or the combination of both. The aromatic compound benzene (Ben) was selected as a model for anthracycline drugs. The effect of CNT curvature, chemical groups (CGs), and doping on the Ben-CNTs interactions was studied using quantum chemistry calculations. Our results show that π-π interactions between Ben and CNTs are influenced by CNT curvature. When the CNTs were functionalized only with CGs and not doped, the system was unstable, resulting in weak Ben-CNT interactions. However, anchoring CGs on DNTs greatly enhanced the Ben-CNT interactions. CNTs with good affinity for drug molecules, improved solubility, and lower tendency to aggregate have potential as DDS for enhancing the efficacy of medicines. We believe that these studies have general applicability and anticipate that our findings will motivate additional theoretical and experimental studies on the biology and chemistry of CNTs as DDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.