Abstract

The adsorption of the acid gas H2S has been explored in both MIL-47(V) and MIL-53(Cr) porous metal−organic frameworks (MOFs) by combining infrared measurements and molecular simulations. It is shown that while the MIL-47(V) structure remains rigid upon H2S adsorption up to a pressure of 1.8 MPa, the MIL-53(Cr) solid initially present in the large pore form (LP) switches to its narrow pore version (NP) at very low pressure before undergoing a second structural transition from the NP to the LP versions at higher pressure. Such structural transitions further explain the different shape of the adsorption isotherms for both MILs. A further step consists of providing some insights into the microscopic arrangements of the adsorbate molecules within the pores of the MILs. At the initial stage of adsorption, the H2S molecules mainly form hydrogen bonded species, either as hydrogen donor (in MIL-47 V) or hydrogen-acceptor (in MIL-53Cr) with the μ2-O and μ2-OH groups, respectively, present at the MOF surfaces. At hi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.