Abstract

Various combined processes with pre-coagulation have been developed for biologically treated landfill leachate, but the microscopic-level processes occurring during coagulation remain largely unknown. Herein, dissolved organic matter (DOM) fate using fluorescence excitation emission matrix spectroscopy combined with parallel factor analysis and electrospray ionization coupled Fourier transform-ion cyclotron resonance mass spectrometry and concomitant heavy metal (HM) behaviors were explored at the molecular level. In addition, AlCl3 and two polyaluminum chloride (PACl) species (dominated by [AlO4Al12(OH)24(H2O)12]7+ and [(AlO4)2Al28(OH)56(H2O)26]18+, respectively) were used. The results show that all coagulants are efficient at removing DOM. PACl was found to be advantageous over AlCl3 in overcoming pH fluctuation, which is ascribed to the different dominant mechanisms, namely, entrapment and sweep flocculation for AlCl3 and charge neutralization for PACl. Consequently, PACl was more effective at removing humic substances, usually high-molecular-weight, oxygen-rich and unsaturated, than protein substances. For HM removal, PACl was likewise better and more stable, where As, Cu, Ni, Co and Hg were removed predominantly via adsorption, and Cr, Zn, Pb, Cd and Mn were removed via coprecipitation. Correlation analysis showed that humic substances tended to complex with HMs and be removed synergistically due to the ubiquitous occurrences of aromatic structures and oxygen-containing functional groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call