Abstract

A molecularly imprinted “paper” (MIP) based on molecular imprinting of caffeine on cellulose/silica composites was successfully produced. Several techniques such as diffuse reflectance infrared spectroscopy (DRIFTS), transmission Fourier transform infrared (FTIR) spectroscopy using demountable path length cell, liquid-phase adsorption rate measurements, scanning electron microscopy, and BET specific surface area tests were used to characterize these MIP composites. These materials not only show enhanced binding capabilities towards the template molecules (caffeine) in comparison to blank experiments, but also were found to discriminate between theophylline and caffeine with relatively good selectivity. A cellulose:silica ratio of 4:2 was found to be close to optimal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.