Abstract

ABSTRACTA resin, imprinted with 3-hydroxybenzoic acid (3HBA), was synthesized from acrylamide (AA, the functional monomer) and ethylene glycol dimethacrylate (EGDMA, the crosslinking agent). Batch analyses showed that the imprinted polymer has a special affinity for the meta-substituted 3HBA, but not for its para-substituted isomer (4HBA) nor for benzoic acid (BA). These results are consistent with the principle that an imprinted resin's ability to recognize is dependent on the target's size, shape, and functionality. Another resin, prepared from AA and EGDMA but in the absence of a template, had similar affinities for 3HBA, 4HBA, and BA; and thus it could not differentiate among the three. The results can be interpreted with a simple two-binding-site model with one site special for 3HBA and the other being more general with similar affinities for 3HBA, 4HBA and BA. The binding of 3HBA to the imprinted resin is characterized by an association constant and the density of each kind of site using a two-site Scatchard equation. The binding sites common to both the imprinted resin and the non-imprinted reference resin were found to have greater affinity but are less numerous than the sites unique to the imprinted resin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.