Abstract
Inflammatory responses contribute to vascular remodeling during tissue repair or ischemia. We hypothesized that inflammatory cell recruitment and endothelial cell activation during vasculogenesis and ischemia-mediated arteriogenesis could be temporally assessed by noninvasive molecular imaging. Contrast ultrasound perfusion imaging and molecular imaging with microbubbles targeted to activated neutrophils, alpha(5)-integrins, or vascular cell adhesion molecule (VCAM-1) were performed in murine models of vasculogenesis (subcutaneous matrigel) or hind-limb ischemia produced by arterial occlusion in wild-type or monocyte chemotactic protein-1-deficient mice. In subcutaneous matrigel plugs, perfusion advanced centripetally between days 3 and 10. On targeted imaging, signal enhancement from alpha(5)-integrins and VCAM-1 coincided with the earliest appearance of regional blood flow. Targeted imaging correlated temporally with histological evidence of channel formation by alpha(5)-integrin-positive monocytes, followed by the appearance of spindle-shaped cells lining the channels that expressed VCAM-1. In ischemic hind-limb tissue, skeletal muscle blood flow and arteriolar density increased progressively between days 2 and 21 after arterial ligation. Targeted imaging demonstrated early signal enhancement for neutrophils, monocyte alpha(5)-integrin, and VCAM-1 at day 2 when blood flow was very low (<20% control). The neutrophil signal declined precipitously between days 2 and 4, whereas VCAM-1 and monocyte signal persisted to day 7. In mice deficient for monocyte chemotactic protein-1, monocyte-targeted signal was severely reduced compared with wild-type mice (1.2+/-0.6 versus 10.5+/-8.8 video intensity units on day 4; P<0.05), although flow responses were only mildly impaired. Different components of the inflammatory response that participate in vascular development and remodeling can be assessed separately with targeted molecular imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.