Abstract

Neuroimaging of σ(1) receptors in the human brain has been proposed for the investigation of the pathophysiology of neurodegenerative and psychiatric diseases. However, there is a lack of suitable (18)F-labelled PET radioligands for that purpose. The selective σ(1) receptor ligand [(18)F]fluspidine (1'-benzyl-3-(2-[(18)F]fluoroethyl)-3H-spiro[[2]benzofuran-1,4'-piperidine]) was synthesized by nucleophilic (18)F(-) substitution of the tosyl precursor. In vitro receptor binding affinity and selectivity were assessed by radioligand competition in tissue homogenate and autoradiographic approaches. In female CD-1 mice, in vivo properties of [(18)F]fluspidine were evaluated by ex vivo brain section imaging and organ distribution of intravenously administered radiotracer. Target specificity was validated by organ distribution of [(18)F]fluspidine after treatment with 1 mg/kg i.p. of the σ receptor antagonist haloperidol or the emopamil binding protein (EBP) inhibitor tamoxifen. In vitro metabolic stability and in vivo metabolism were investigated by LC-MS(n) and radio-HPLC analysis. [(18)F]Fluspidine was obtained with a radiochemical yield of 35-45%, a radiochemical purity of ≥ 99.6% and a specific activity of 150-350 GBq/μmol (n = 6) within a total synthesis time of 90-120 min. In vitro, fluspidine bound specifically and with high affinity to σ(1) receptors (K (i) = 0.59 nM). In mice, [(18)F]fluspidine rapidly accumulated in brain with uptake values of 3.9 and 4.7%ID/g and brain to blood ratios of 7 and 13 at 5 and 30 min after intravenous application of the radiotracer, respectively. By ex vivo autoradiography of brain slices, resemblance between binding site occupancy of [(18)F]fluspidine and the expression of σ(1) receptors was shown. The radiotracer uptake in the brain as well as in peripheral σ(1) receptor expressing organs was significantly inhibited by haloperidol but not by tamoxifen. Incubation with rat liver microsomes led to a fast biotransformation of fluspidine. After an incubation period of 30 min only 13% of the parent compound was left. Seven metabolites were identified by HPLC-UV and LC-MS(n) techniques. However, [(18)F]fluspidine showed a higher metabolic stability in vivo. In plasma samples ∼ 94% of parent compound remained at 30 min and ∼ 67% at 60 min post-injection. Only one major radiometabolite was detected. None of the radiometabolites crossed the blood-brain barrier. [(18)F]Fluspidine demonstrated favourable target affinity and specificity as well as metabolic stability both in vitro and in animal experiments. The in vivo properties of [(18)F]fluspidine offer a high potential of this radiotracer for neuroimaging and quantitation of σ(1) receptors in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.