Abstract
ATP-dependent DEAD (Asp-Glu-Ala-Asp)-box RNA helicases not only regulate RNA metabolism, but also are involved in host antiviral innate immune responses. It is important to investigate the orthologs of this protein family to broaden our understanding of innate immunity and promote protective strategies against viral infections in ducks. In the current study, duck DDX3X (duDDX3X) was first cloned, which consists of 1959 bp encoding a protein of 652 amino acids. duDDX3X has the typical structure of this family, including nine motifs, DEAD and HELICc domains. The amino acid sequence of duDDX3X shares a high similarity with the DDX3Xs of avian and mammalian. Quantitative real-time PCR indicated that duDDX3X was ubiquitously expressed in nearly all tissues. Overexpression of duDDX3X could activate interferon (IFN)-β and enhance the RIG-I-induced IFN-β yield in duck embryo fibroblast cells. However, duDDX3X had no significant effect on the expression of proinflammatory cytokines such as IL-1β, IL-6, and CXCL-8. Tembusu virus (TMUV) infection significantly downregulated duDDX3X. Overexpression and siRNA interference studies showed that duDDX3X inhibited the replication of TMUV through IFN-β at the early stages of infection. Collectively, our results indicated that duDDX3X could positively modulate type I interferon and play an essential role in response to TMUV infection. This study will contribute to a better understanding of duDDX3X in the innate immune system of ducks and lay a solid foundation for further studies of duDDX3X in antiviral immunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.