Abstract

It has been long desired but challenging to forward the advanced treatment of wastewater from empirical trials towards scientific design due to the lack of molecular insight into the pollutants of concern. Herein, we first established a systematic methodology to identify the ligands of Ni(II)-complexes in an electroless nickel (EN) plating effluent. The presence of N-containing groups in the ligands of most Ni(II)-complexes was verified by time-aligned ICP-MS and ESI-HRMS, implying the suitability of autocatalytic ozonation for efficient decomplexation. Thereby, a combined process was proposed on the basis of ozonation to achieve over 83% decomplexation of Ni(II) (initially at 0.36 mg/L), followed by selective Ni(II) sequestration for resource recovery. Combinational LC-MS systems revealed the ozonation-induced fragmentation or elimination of most Ni(II)-complexes as well as the structural change of the residual complexed molecules. The released free Ni(II) was further sequestrated by a nanocomposite of hydrated Zr(IV) oxide confined in a polymeric cation exchanger (nHZO@PCE). The fixed-bed working capacity of nHZO@PCE (∼550 BV) for the ozonated EN plating effluent was over 18 times that of the cation exchanger host (∼30 BV) at the breakthrough point of 0.10 mg Ni/L. More attractively, five adsorption-regeneration cycles demonstrated the great potential of the hybrid adsorbent for sustainable utilization. This study is believed to shed new light on how to design rational processes for advanced treatment of real wastewater based on molecular identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.