Abstract

The green microalgae Closterium ehrenbergii is an ideal organism for ecotoxicology assessments; however, its toxicogenomics has been insufficiently examined. Here, we identified three iron/manganese superoxide dismutase (SOD) genes (designated as CeFeSOD1, CeFeSOD2, and CeMnSOD) from C. ehrenbergii and examined their expressional patterns for four metals (iron, manganese, copper, and nickel). These genes encoded 362, 224, and 245 amino acids, respectively; signal-peptide analysis showed that they were differentially located in chloroplasts, cytosol, or mitochondria. Real-time PCRs revealed differential expression patterns according to metal and doses. Interestingly, CeSODs displayed no noticeable changes to treatment with their corresponding cofactor metals, iron or manganese, even at high doses. However, they were obviously up-regulated under toxic metal (copper and nickel) exposure, exhibiting approximately 10.8- and 4.4-fold increases, respectively. Copper (0.2 mg/L) dramatically stimulated intracellular reactive oxygen species (ROS) formation, increased SOD activity, and reduced photosynthetic efficiency in C. ehrenbergii. These results suggest that CeFeSODs and CeMnSOD might be involved in protecting cells against damage and oxidative stress caused by non-cofactor metals, such as copper and nickel. These genes were sensitively responsive at levels well below the EC50, showing that they can be used as molecular biomarkers to assess the toxicity of specific metal contaminants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call