Abstract

AbstractHydrological events, driven by rainfall, control the amount and composition of dissolved organic matter (DOM) mobilized through river networks. In forested watersheds, the concentration, composition, and reactivity of DOM exported changes as baseflow transitions to storm flow, with major implications to downstream biogeochemistry. Hysteresis describes an observed difference between in‐stream solute concentration/signal and discharge. By studying the relationship between DOM and stream discharge, we refine our understanding of the environmental and hydrological factors that influence the quantity and quality of stream DOM. The main objective of this study was to track hysteretic changes in riverine DOM molecular composition during storm events. Samples were collected from nested sites within the Passumpsic River catchment (Vermont, USA), a tributary of the Connecticut River. High‐resolution monitoring of fluorescent DOM (via in situ sensors) and automated collection of discrete samples captured short‐term, hydrologically driven variations in DOM concentration and composition. Ultrahigh‐resolution mass spectrometry revealed an enrichment in aliphatic compounds at storm onset, while aromatic and polyphenolic compounds were more enriched at peak discharge. Molecular hysteresis patterns were similar across stream orders, indicating that fresh, terrigenous DOM is quickly shunted downstream, through the river network, during pulses of high discharge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call