Abstract

The hydrogen storage capacity of binary THF-H(2) clathrate hydrate has been determined as a function of formation pressure, THF composition, and time. The amount of hydrogen stored in the stoichiometric hydrate increases with pressure and exhibits asymptotic (Langmuir) behavior to approximately 1.0 wt % H(2). This hydrogen concentration corresponds to one hydrogen molecule occupying each of the small 5(12) cavities and one THF molecule in each large 5(12)6(4) cavity in the hydrate framework. Contrary to previous reports, hydrogen storage was not increased upon decreasing the THF concentration below the stoichiometric 5.6 mol % solution to 0.5 mol %, at constant pressure, even after one week. This provides strong evidence that THF preferentially occupies the large 5(12)6(4) cavity over hydrogen, for the range of experimental conditions tested. The maximum amount of hydrogen stored in this binary hydrate was about 1.0 wt % at moderate pressure (<60 MPa) and is independent of the initial THF concentration over the range of conditions tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.