Abstract

Hydrogen (H2) is the lightest and most common element in the universe. In molecular form, (H2) is a colorless, odorless, tasteless and non-toxic gas. For a long time, hydrogen was considered physiologically inert until its ability to reduce the intensity of the negative effect of oxidative stress was detected. According to modern concepts, oxidative stress affecting cells and tissue to be damaged, aged and causing a number of diseases - cardiovascular, rheumatic, gastrointestinal, neurodegenerative, oncological, metabolic and other. Antioxidants, however, have had limited use in the prevention and treatment of oxidative stress-related diseases due to the high toxicity and low efficacy of many of them. Therefore, it remained necessary to identify effective antioxidants with little-to-no side effects. Since 2007, discovery molecular hydrogen (H2) to possess selective antioxidant properties, multiple studies have demonstrated H2 to show beneficial effects in diverse human disease (such as digestive, cardiovascular, central nervous, respiratory, reproductive, immune, endocrine systems diseases, cancer, metabolic syndrome, and aging). H2 is a specific scavenger of •OH, which is a very strong oxidant that reacts with nucleic acids, lipids, and proteins, resulting in DNA fragmentation, lipid peroxidation, and protein inactivation. Fortunately, H2 does not appear to react with other ROS having normal physiological functions in vivo. Due to its mild but effective antioxidant properties, H2 can reduce oxidative stress and cause numerous effects in cells and tissues, including anti-apoptosis, anti-inflammatory, anti-allergic and metabolic effects. This review discusses H2 biological effects, describes effective H2 delivery approaches and summarizes data on the results and prospects of H2 applications in the prevention of human diseases and therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.