Abstract
Abstract Various noncovalent molecular interactions have been employed as driving forces to construct well-defined discrete self-assemblies. Among them, coordination and hydrogen bonds are widely used due to their high directionality and appropriate bond strength. However, the utilization of nondirectional, week molecular interactions for this purpose still presents a key challenge in supramolecular self-assembly. To tackle this critical issue, we presented a novel design concept, molecular “Hozo”, that the components with large, indented complementary hydrophobic surfaces tightly mesh with each other driven by the hydrophobic effect in water. Based on this concept, we developed a series of water-soluble cube-shaped molecular assemblies, i.e., nanocubes, composed of six molecules of identical gear-shaped amphiphiles (GSAs) with the aid of van der Waals (vdW) and cation-π interactions as well as the hydrophobic effect. The nanocubes exhibit unique properties derived from molecular meshing of the building blocks, such as high thermal stability yet as high conformational flexibility as biological molecules and emission whose intensity is affected by the structural change of the nanocube.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.