Abstract
Convection is a key transport phenomenon important in many different areas, from hydrodynamics and ocean circulation to planetary atmospheres or stellar physics. However, its microscopic understanding still remains challenging. Here we numerically investigate the onset of convective flow in a compressible (non-Oberbeck-Boussinesq) hard disk fluid under a temperature gradient in a gravitational field. We uncover a surprising two-step transition scenario with two different critical temperatures. When the bottom plate temperature reaches a first threshold, convection kicks in (as shown by a structured velocity field) but gravity results in hindered heat transport as compared to the gravity-free case. It is at a second (higher) temperature that a percolation transition of advection zones connecting the hot and cold plates triggers efficient convective heat transport. Interestingly, this picture for the convection instability opens the door to unknown piecewise-continuous solutions to the Navier-Stokes equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.