Abstract

The rotational spectra of three isotopologues of H(2)S···ICF(3) and four isotopologues of H(2)O···ICF(3) are measured from 7-18 GHz by chirped-pulse Fourier transform microwave spectroscopy. The rotational constant, B(0), centrifugal distortion constants, D(J) and D(JK), and nuclear quadrupole coupling constant of (127)I, χ(aa)(I), are precisely determined for H(2)S···ICF(3) and H(2)O···ICF(3) by fitting observed transitions to the Hamiltonians appropriate to symmetric tops. The measured rotational constants allow determination of the molecular geometries. The C(2) axis of H(2)O/H(2)S intersects the C(3) axis of the CF(3)I sub-unit at the oxygen atom. The lengths of halogen bonds identified between iodine and sulphur, r(S···I), and iodine and oxygen, r(O···I), are determined to be 3.5589(2) Å and 3.0517(18) Å respectively. The angle, φ, between the local C(2) axis of the H(2)S/H(2)O sub-unit and the C(3) axis of CF(3)I is found to be 93.7(2)° in H(2)S···ICF(3) and 34.4(20)° in H(2)O···ICF(3). The observed symmetric top spectra imply nearly free internal rotation of the C(2) axis of the hydrogen sulphide/water unit about the C(3) axis of CF(3)I in each of these complexes. Additional transitions of H(2)(16)O···ICF(3), D(2)(16)O···ICF(3) and H(2)(18)O···ICF(3) can be assigned only using asymmetric top Hamiltonians, suggesting that the effective rigid-rotor fits employed do not completely represent the internal dynamics of H(2)O···ICF(3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.