Abstract

Molecular geometries, electronic properties, and vibrational spectroscopies of TM@C24 and TM@C24H12 (TM = Cr, Mo, and W) in their different spin configurations have been systematically investigated with the hybrid DFT-(U)B3PW91 functional. The results show that the TM atoms bind over the pentagon ring inside C24 cage, and they move gradually toward the center of C24 cage along with the increasing atomic radii. The most stable Mo@C24H12 and W@C24H12 are in their spin-triplet states. The analyses of dissociation energy and energy gap reveal that TM@C24 (TM = Cr, Mo, and W) and Cr@C24H12 are not only thermodynamically stable, but also considerably stable kinetically. Meanwhile, natural population analyses tell us that the two cages act as electron acceptors, and the transferred charge from the W atom to C24 cage is the largest in the endohedral metallofullerenes. Additionally, the vibrational frequencies and active infrared intensities may be used as evidence to characterize these unknown species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call