Abstract

Peripheral populations of eight species of freshwater bivalves (Unionidae.) extending their geographic ranges into Nova Scotia, Canada, were examined electrophoretically to determine both the extent of genetic variability within such populations, and whether the hypothesized pathway of colonization across the Isthmus of Chignecto is reflected in patterns of genetic resemblance among these populations. The Nova Scotian species examined could be separated into two groups based on levels of observed heterozygosity and levels of variability in allele frequencies. The first group is characterized by low levels of heterozygosity and polymorphism compared with north-eastern American populations, and in the case of one species, Elliptio complanala, considerable variability in allele frequencies among populations occurring in similar habitats in different drainages. Populations of E. complanata from Nova Scotia can be differentiated from conspecific populations on the southern Atlantic Slope by possession of fast alleles at two loci. Multivariate analyses define subgroups within populations of E. complanata consistent with hypothesis that the species invaded Nova Scotia by way of the Isthmus of Chignecto, and then split into two groups, one of which colonized Cape Breton to the north and the other of which colonized southern areas of the Province. The second group of Nova Scotian species is characterized by little reduction in heterozygosity and polymorphism compared with values observed among north-eastern American conspecifics or congeners, little variability in allele frequencies from population to population, and little evidence to suggest that these species were dependent on the land bridge to invade the Province. The type of dispersal is hypothesized to be responsible, in part, for these differences: larvae of species in the first group rely on a parasitic attachment to fish with territorial habits limited to fresh water, and are thus likely to invade new drainages separated by salt water by chance, in small numbers, and in stepping-stone fashion. Species in the second group parasitize anadromous or saltwater tolerant hosts, are likely to be introduced into new habitats in greater numbers and/or receive greater amounts of gene flow subsequent to colonization, and seem less dependent on land-bridges to colonize new habitats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.