Abstract

Most higher plants assimilate atmospheric CO2 through the C3 pathway of photosynthesis using ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, when CO2 availability is reduced by environmental stress conditions, the incomplete discrimination of CO2 over O2 by Rubisco leads to increased photorespiration, a process that reduces the efficiency of C3 photosynthesis. To overcome the wasteful process of photorespiration, approximately 10% of higher plant species have evolved two alternate strategies for photosynthetic CO2 assimilation, C4 photosynthesis and Crassulacean acid metabolism. Both of these biochemical pathways employ a "CO2 pump" to elevate intracellular CO2 concentrations in the vicinity of Rubisco, suppressing photorespiration and therefore improving the competitiveness of these plants under conditions of high light intensity, high temperature, or low water availability. This CO2 pump consists of a primary carboxylating enzyme, phosphoenolpyruvate carboxylase. In C4 plants, this CO2-concentrating mechanism is achieved by the coordination of two carboxylating reactions that are spatially separated into mesophyll and bundle-sheath cell types (for review, see R.T. Furbank, W.C. Taylor [1995] Plant Cell 7: 797-807;M.S.B. Ku, Y. Kano-Murakami, M. Matsuoka [1996] Plant Physiol 111: 949-957). In contrast, Crassulacean acid metabolism plants perform both carboxylation reactions within one cell type, but the two reactions are separated in time. Both pathways involve cell-specific changes in the expression of many genes that are not present in C3 plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.