Abstract

While studying Myxobolus gill infections of cyprinid fishes, the authors found large, segmented plasmodia in three species: ide (Leuciscus idus), asp (Aspius aspius) and white bream (Blicca bjoerkna). As regards their size and morphology, the spores from these plasmodia corresponded to those of M. dujardini described from chub (Leuciscus cephalus). However, the 18S rDNA sequences of spores from the three cyprinids differed from those of M. dujardini. Based on molecular differences, this paper describes two new species: M. alvarezae sp. nov. from ide and asp, and M. sitjae sp. nov. from white bream. The two new species and M. dujardini had a similar tissue tropism, and infected the multilayered epithelium of the gill filaments. Histological examination of the infected filaments demonstrated that the large plasmodia with multiple buddings were formed from amalgamating small plasmodia. Besides carrying infection in the filamental epithelium, the three above fish species were infected by small intralamellar plasmodia as well. These plasmodia were filled by spores that resembled the roach parasite M. intimus both in morphology and seasonal development. The 18S rDNA sequences of 'intimus-like' spores from ide and asp differed only in some base pairs from spores found in the type host roach, and were identified as belonging to M. intimus. The spores found in white bream, however, showed 3.6-5.0% difference in DNA sequence from those of M. intimus; therefore, they have been described as M. eirasianus sp. nov. The aim of this paper was to demonstrate the importance of using molecular methods for separating and identifying morphologically corresponding or closely similar Myxobolus spp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call