Abstract

We recently demonstrated that the potent hallucinogenic drug lysergic acid diethylamide (LSD) dynamically influences the expression of a small collection of genes within the mammalian prefrontal cortex. Towards generating a greater understanding of the molecular genetic effects of hallucinogens and how they may relate to alterations in behavior, we have identified and characterized expression patterns of a new collection of three genes increased in expression by acute LSD administration. These genes were identified through additional screens of Affymetrix DNA microarrays and examined in experiments to assess dose-response, time course and the receptor mediating the expression changes. The first induced gene, C/EBP-beta, is a transcription factor. The second gene, MKP-1, suggests that LSD activates the MAP (mitogen activated protein) kinase pathway. The third gene, ILAD-1, demonstrates sequence similarity to the arrestins. The increase in expression of each gene was partially mediated through LSD interactions at 5-HT2A (serotonin) receptors. There is evidence of alternative splicing at the ILAD-1 locus. Furthermore, data suggests that various splice isoforms of ILAD-1 respond differently at the transcriptional level to LSD. The genes thus far found to be responsive to LSD are beginning to give a more complete picture of the complex intracellular events initiated by hallucinogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.