Abstract

Diverse patterns of plant fruit and seed coloration are determined by the presence of two main types of pigment, carotenoids (red, orange and yellow color) and anthocyanins (purple, blue, red). Thеy belong to two groups of secondary metabolites, isoprenoids and flavonoids. Interest towards the genetic mechanisms that control coloration in plants has recently increased due to the antioxidant and antimicrobial properties of some pigments and their colorless precursors consumed with plant-derived food. The genes encoding enzymes involved in step-bystep conversion of initial organic molecules to final pigmented compounds are referred to as structural genes, while regulatory genes are responsible for activation of the expression of structural genes and control the synthesis of pigments at certain times and in proper tissue. The data in plant genetics accumulated to date show that the inter- and intraspecies phenotypic diversity in coloration is mainly related with regulatory genes. Previously developed rich gene collections and precise genetic models for coloration traits in dicots and monocots as well as the rapid development of molecular genetic methods for studying plants allowed for studying genetic regulation of pigment synthesis at a molecular level. The peculiarities of the regulation of carotenoid biosynthesis are exemplified with Solanaceae fruits. The genetic mechanisms underlying the synthesis of various flavonoid pigments are exemplified with a study of seed color in Poaceae plants. In summary, prospects for the practical use of regulatory genes that control pigment synthesis are discussed and examples of their practical use in vegetable and cereal crop breeding are given.

Highlights

  • Diverse patterns of plant fruit and seed coloration are determined by the presence of two main types of pigment, carotenoids and anthocyanins

  • Interest towards the genetic mechanisms that control coloration in plants has recently increased due to the antioxidant and antimicrobial properties of some pigments and their colorless precursors consumed with plant-derived food

  • The genes encoding enzymes involved in step-bystep conversion of initial organic molecules to final pigmented compounds are referred to as structural genes, while regulatory genes are responsible for activation of the expression of structural genes and control the synthesis of pigments at certain times and in proper tissue

Read more

Summary

Физиологическая и биохимическая генетика растений

Разнообразная окраска плодов и семян растений определяется наличием двух важных типов пигментов – каротиноидов (красная, оранжевая, желтая) и антоцианов (фиолетовая, синяя, красная). Генетическая регуляция синтеза различных флавоноидных пигментов показана на примере изучения окраски семян у растений семейства Poaceae. В том числе показано, как одна и та же группа пигментов (антоцианов) при синтезе в разных тканях под действием тканеспецифичных регуляторных механизмов приводит к формированию различных признаков окраски, например признаков «голубое зерно» и «фиолетовое зерно» у пшеницы В отличие от мутаций в других генах (Nr, nor и rin), влияющих на созревание через частичное подавление синтеза ликопина, мутация гена Cnr связана с полным подавлением экспресии гена PSY1 и биосинтеза каротиноидов даже в присутствии этилена (Manning, 2006). Действие мутантов серии high pigment (hp-1, hp-1w, hp-2, hp-2 j и hp-2 dg) характеризуется увеличением числа и размеров хлоропластов, что служит основой для усиления синтеза каротиноидов в плодах томата при созревании (Kolotilin et al, 2007; Barry, 2009). Другие гены светозависимых транскрипционных факторов, LeHY5 и LeCOP1LIKE, принадлежащие к семейству bZIP, являются положительным и отрицательным регу-

MYB ноиды
MADS Box Transcription Factor
Нет д а н н ы х
Arabidopsis thaliana
RT Антоцианы
Перикарп зерна
Oriza sativa Ra
Лонг кипер
Список литературы
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call