Abstract
BackgroundGlanzmann thrombasthenia (GT) is a rare autosomal recessive abnormality of platelet aggregation with quantitative and/or qualitative abnormality of αIIbβ3 integrin. The αIIbβ3 is a platelet fibrinogen receptor, which is required for platelet aggregation, firm adhesion, and also spreading.The disease is more prevalent in the populations with a higher rate of consanguineous marriages as in some Middle Eastern populations including Iraq, Jordan, and Iran. Different types of mutations in ITGA2B and ITGB3 genes have been previously reported to cause the disease.ResultIn this study, 16 patients with the clinical diagnosis of GT were studied. Direct sequencing of the exons and exon-intron boundaries of the above genes revealed mutations in 14 patients (detection rate: 87.5%). Briefly, out of fifteen types of identified mutations, 14 were novel. Seven mutations in the ITGB3 gene included 4 missense [c.2T > C, c.155 G > T, c. 538 G > A, c.1990 G > T], one nonsense mutation [c.1303 G > T], a small deletion [c.1656_1658delCTC] and a deletion of one nucleotide [c.401delA]. Mutations in the ITGA2B were 8 different mutations consisting 2 missense [c.286 T > A, c.842 C > T], 2 deletions [c.1899 del T, c.189-319_236del], an insertion [c.1071_1072insG] and one splice site mutations [c.409–3 C > G], one synonymous mutation that might alter the normal splicing process [c.1392 A > G] and a nonsense mutation [c.1555 C > T].The causative mutation in 2 patients remained unknown. Using long-range PCR and sequencing, we found a rather large deletion. The break point of this deletion covers 319 nt from the last part of the first intron and 48 nt from the beginning of the second exon of ITGA2B gene. The deletion was also detected in two unrelated patients with the same ethnicity. In addition, in silico analyses of novel mutations were performed.ConclusionThere was no recurrent mutation in the studied population. This may be due to either small sample size or the heterogeneity of the studied population.
Highlights
Glanzmann thrombasthenia (GT, OMIM: 273800) is a rare inherited disorder of platelet function, caused by quantitative or qualitative defects of the platelet membrane glycoprotein (GP) IIb-IIIa complex [1]
The study included sixteen unrelated families with the diagnosis of GT. As it was expected most of the patients were the result of consanguineous marriages (14/16 families, 87%)
All identified mutations were homozygous except one in the ITGB3, which was in the form of compound heterozygous
Summary
Glanzmann thrombasthenia (GT, OMIM: 273800) is a rare inherited disorder of platelet function, caused by quantitative or qualitative defects of the platelet membrane glycoprotein (GP) IIb-IIIa (αIIbβ3) complex [1]. The molecular basis of GT is linked to quantitative and/ or qualitative abnormalities of αIIbβ integrin that mediates binding of the adhesive proteins to attach aggregating platelets and ensure thrombus formation at sites of injury in blood vessels. Affected individuals show mucocutaneous bleeding with the absent of platelet aggregation in response to all physiologic stimuli. They show normal platelet count and morphology. Glanzmann thrombasthenia (GT) is a rare autosomal recessive abnormality of platelet aggregation with quantitative and/or qualitative abnormality of αIIbβ integrin. Different types of mutations in ITGA2B and ITGB3 genes have been previously reported to cause the disease
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.