Abstract

Whole plant senescence is a programmed, endogenously controlled process in which cellular components are degraded and the resultant metabolites sequestered to other plant organs. All cells, with the possible exception of the meristem progenitors, go through cell division, expansion, elaboration of secondary structures to the primary cell wall, quiescence, and finally death. This senescence process is thought to be partially catalyzed by an increase in translation of degradative proteins coupled to a decrease in translation of vital proteins (Skadsen and Cherry, 1983). Inducers of senescence include wounding, fruit ripening, changes in hormone levels (auxin, cytokinins + auxin, Ca2+ + cytokinins, and ethylene), various stresses (anaerobiosis, heat, cold, UV light, Cd2+, and Li+), and pathogen attack (Theologis, 1992). The regulatory mechanisms that facilitate entry of a cell, tissue, or whole plant into this final developmental stage are largely unknown; however, hormonal controls are likely to be involved. A better understanding of the genetic regulation of senescence will be important for studies relating to: 1) normal cellular differentiation, maintenance, and turnover; 2) plant defense mechanisms and the hypersensitive response; and 3) embryogenesis and development. In addition, economic benefits could result from reduction in post-harvest and post-production losses as well as improvement of crop yields. Evidence indicates that soybean cotyledon senescence and induced "rejuvenation" (i.e.,. the reversal of the senescence process) are associated with changes in gene expression (Marek and Stewart 1992; Skadsen and Cherry 1983). During germination the cotyledons emerge, become green, and develop leaf-like characteristics including photosynthetic and storage mobilizing capability. During normal development, the cotyledons senesce after expansion of the first and second trifoliates. It has been shown (Krul, 1974) that this process can be reversed by the removal of the epicotyl up to the "point of no return" (PONR), a developmental stage at which up to 90% of nucleic acids and 80% of proteins are lost from the senescing cotyledon. The objectives of this research project were to identify genes that show differential expression during senescence and rejuvenation in the soybean cotyledon system and to isolate clones of genes that are specifically up-regulated in expression during these processes. To accomplish these objectives, Northern blots were used to assay soybean cotyledon mRNA populations during various stages of senescence and rejuvenation using a collection of gene clones known or suspected to be involved in senescence and rejuvenation. These gene clones included: 1) a tomato ethylene forming enzyme (EFE) and several other

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.