Abstract

The effect of molecular gas radiation upon the thermal development downstream from a step change in wall temperature is examined for both laminar and turbulent flow in a black-walled flat-plate duct. The exponential-tailed band model is used to represent spectral variations in gas absorption and emission. Values of total and radiative Nusselt numbers, cold-wall-layer transmission factors, and dimensionless bulk temperatures are reported for several dimensionless axial locations and for various sets of the dimension-less controlling parameters. Even in the entrance region, self absorption by wall layer gas blocks significantly the radiation exchange between the gas core and wall. An approximate correlation is proposed for both plane-duct and pipe turbulent entrance flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.