Abstract

The synthesis of mevalonate, a molecule required for both sterol and isoprene biosynthesis in eukaryotes, is catalysed by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Using a gene dosage approach, we have isolated the gene encoding HMG-CoA reductase hmgl+, from the fission yeast Schizosaccharomyces pombe (Accession Number L76979). Specifically, hmgl+ was isolated on the basis of its ability to confer resistance to lovastatin, a competitive inhibitor of HMG-CoA reductase. Gene disruption analysis showed that hmgl+ was an essential gene. This result provided evidence that, unlike Saccharomyces cerevisiae, S. pombe contained only a single functional HMG-CoA reductase gene. The presence of a single HMG-CoA reductase gene was confirmed by genomic hybridization analysis. As observed for the S. cerevisiae HMGlp, the hmgl+ protein induced membrane proliferations known as karmellae. A previously undescribed 'feed-forward' regulation was observed in which elevated levels of HMG-CoA synthase, the enzyme catalysing the synthesis of the HMG-CoA reductase substrate, induced elevated levels of hmgl+ protein in the cell and conferred partial resistance to lovastatin. The amino acid sequences of yeast and human HMG-CoA reductase were highly divergent in the membrane domains, but were extensively conserved in the catalytic domains. We tested whether the gene duplication that produced the two functional genes in S. cerevisiae occurred before or after S. pombe and S. cerevisiae diverged by comparing the log likelihoods of trees specified by these hypotheses. We found that the tree specifying post-divergence duplication had significantly higher likelihood. Moreover, phylogenetic analyses of available HMG-CoA reductase sequences also suggested that the lineages of S. pombe and S. cerevisiae diverged approximately 420 million years ago but that the duplication event that produced two HMG-CoA reductase genes in the budding yeast occurred only approximately 56 million years ago. To date, S. pombe is the only unicellular eukaryote that has been found to contain a single HMG-CoA reductase gene. Consequently, S. pombe may provide important opportunities to study aspects of the regulation of sterol biosynthesis that have been difficult to address in other organisms and serve as a test organism to identify novel therapies for modulating cholesterol synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call