Abstract

Acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase (EC 3.1.1.8) form homologous sets of multiple molecular forms. The central nervous system of mammals contains mostly tetramers (G 4) and monomers (G 1). Their proportions have been shown to vary during maturation in rat brain. In order to examine whether a similar evolution occurs in the human, we performed parallel studies of the activity, solubility and molecular forms of acetylcholinesterase in rat and human brains at various stages. We find both similarities and differences: in rat brain, the enzyme increases mostly postnatally but in human brain acetylcholinesterase reaches a maximum at birth. There is an increase in the proportion of G 4 and a decrease in the solubility of this form in the absence of detergent in human as well as in rat brain. These changes occur around birth in rat, but during early pregnancy, before 11 weeks in human brain. In both species, the solubility of the enzyme in detergent-free buffers decreases progressively from more than 50% before birth to about 10–20% in the adult. In addition we analyzed butyrylcholinesterase as well as the levels of the neuron-specific enolase and of the glial S-100 protein. In human, γγ-enolase rises to its adult level after birth, but before the S-100 protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.