Abstract

Arabinoxylan (AX) is a major dietary fibre component found in a variety of cereals. Numerous health benefits of arabinoxylans have been reported to be associated with their solubility and molecular features. The current study reports the development of a functional bread using a combination of AX-enriched material (AEM) and optimal commercial endoxylanase. The total AX content of bread was increased to 8.2 g per 100 g available carbohydrates. The extractability of AX in breads with and without endoxylanase was determined. The results demonstrate that water-extractable AX (WE-AX) increased progressively through the bread making process. The application of endoxylanase also increased WE-AX content. The presence of 360 ppm of endoxylanase had positive effects on the bread characteristics in terms of bread volume and firmness by converting the water unextractable (WU)-AX to WE-AX. In addition, the molecular weight (Mw) distribution of the WE-AX of bread with and without endoxylanase was characterized by size-exclusion chromatography. The results show that as the portion of WE-AX increased, the amount of high Mw WE-AX (higher than 100 kDa) decreased, whereas the amount of low Mw WE-AX (lower than 100 kDa) increased from 33.2% to 44.2% through the baking process. The low Mw WE-AX further increased to 75.5% with the application of the optimal endoxylanase (360 ppm).

Highlights

  • Arabinoxylan (AX) is a major dietary fibre component found in a variety of cereals [1,2,3,4,5,6]

  • It is interesting to observe from recent studies that as wheat bran AXs were depolymerised to oligosaccharide (AXOS), they showed a stronger prebiotic activity [5,6,7,12,13,14,15]

  • The results show that AX-enriched material (AEM) contains 53.4% of starch, 8% of proteins and

Read more

Summary

Introduction

Arabinoxylan (AX) is a major dietary fibre component found in a variety of cereals [1,2,3,4,5,6]. Recent research has focused on the bioactivities and health benefits of cereal AXs [6,7]. The studies on the immune stimulation properties of wheat bran AXs have demonstrated that the AXs with an average molecular weight (Mw) of 32.52 kDa extracted with endoxylanase showed a stronger activity than those with an average Mw of 351.7 kDa extracted with alkali solution [10,11]. The immune stimulation properties of extracted wheat bran AXs seem to be related with their molecular features. It is interesting to observe from recent studies that as wheat bran AXs were depolymerised to oligosaccharide (AXOS), they showed a stronger prebiotic activity [5,6,7,12,13,14,15]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.