Abstract

Theoretical simulations of electronic excitations and associated processes in molecules are indispensable for fundamental research and technological innovations. However, such simulations are notoriously challenging to perform with quantum mechanical methods. Advances in machine learning open many new avenues for assisting molecular excited-state simulations. In this Review, we track such progress, assess the current state of the art and highlight the critical issues to solve in the future. We overview a broad range of machine learning applications in excited-state research, which include the prediction of molecular properties, improvements of quantum mechanical methods for the calculations of excited-state properties and the search for new materials. Machine learning approaches can help us understand hidden factors that influence photo-processes, leading to a better control of such processes and new rules for the design of materials for optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.