Abstract

Oribatid mites are a specious order of microarthropods within the Chelicerata, compromising about 11,000 described species. They are ubiquitously distributed across different microhabitats in all terrestrial ecosystems around the world and were among the first animals colonizing terrestrial habitats as decomposers and scavengers. Despite their species richness and ecological importance genomic resources are lacking for oribatids. Here, we present a 143-Mb chromosome-level genome assembly of the clonal, all-female oribatid mite species Archegozetes longisetosus Aoki, a model species used by numerous laboratories for the past 30 years. Comparative genomic and transcriptional analyses revealed patterns of reduced body segmentation and loss of the segmental identity gene abd-A within Acariformes, and unexpected expression of key eye development genes in these eyeless mites across developmental stages. Consistent with their soil dwelling lifestyle, investigation of sensory genes revealed a species-specific expansion of gustatory receptors, and evidence of horizontally transferred genes related to cell wall degradation of plant and fungal matter, both components of Archegozetes’ diet. Oribatid mites are also noted for their biosynthesis capacities and biochemical diversity. Using biochemical and genomic data, we were able to delineate the backbone biosynthesis of monoterpenes, an important class of compounds found in the major exocrine gland system of Oribatida – the oil glands. Given the mite’s strength as an experimental model, the new high-quality resources provided here will serve as the foundation for molecular research in Oribatida and will enable a broader understanding of chelicerate evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.