Abstract

Forty-nine populations of nine species of North American cave crickets (genera Euhadenoecus and Hadenoecus) have been studied for genetic variation at 41 loci by electrophoresis. Wright's FST , Slatkin's Nm* gene-flow estimator, and Nei's genetic distances (D) have been used to compare closely related species that have different ecological requirements (cave vs. forest species), distribution patterns, and/or different degrees of geographic isolation among populations. Cave and epigean (noncave) species differ greatly in their levels of genetic differentiation. Cave species have lower rates of gene exchange (low Nm, high D, and FST ) than epigean species. Within cave species the degree of genetic differentiation among populations is correlated with the limestone structure of the area where the species occur. Species or groups of populations inhabiting areas where the limestone is continuous and highly fissured (e.g., H. subterraneus populations in the Mammoth Cave region) are genetically less differentiated than are populations occurring in regions where the limestone distribution is more fragmented, such as the Appalachian Ridge where E. fragilis occurs; this effect is more extreme in Central Tennessee where genetically differentiated E. insolitus populations occur only a few kilometers apart. This suggests that epigean dispersal through forest habitat in cave-dwelling species is negligable. For forest species, the data indicate relatively recent radiation with ongoing gene exchange among populations. For cave species, the distribution of protein polymorphisms is apparently more a function of historical patterns of gene exchange rather than current gene exchange. Phylogenetic relationships were studied using cluster analyses (UPGMA and Wagner algorithms) of Nei's and Edwards' genetic distances and multivariate analysis (correspondence analysis) of the raw allele frequencies. Different algorithms result in branching patterns that are similar but not entirely concordant with one another or with the phylogeny based on morphology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.